02-601 Gene Co-expression Visualization Zhiyun Gong

Gene Co-expression Visualization

Introduction

Gene co-expression network is an undirected graph in which each node corresponds
to a gene and each edge represents the co-expression relation between a pair of genes
(van Dam et al., 2017). The co-expression relationship is usually identified by
calculating the correlation coefficient between the expression levels of a pair of genes.
Based on these relationships, the researchers could identify the groups of genes with
correlated expression levels and study the functions they are collectively involved in,
which provides different insights other than the studies focus on individual genes.

In this project, the program written in Go programming language will take a gene
expression profile provided by the user, identify the co-expressed gene groups, and
enable the users to visualize the co-expression network interactively. Besides, the
identified co-expressed gene cluster can also be used for Gene Ontology (GO) (Gene
Ontology Consortium, 2004) or pathway enrichment analysis, and an example using
the web application shinyGO (Ge & Jung, 2018) is provided in this report.

Methods

(a) Data processing

Data filtering

To filter out the genes with very low expression levels, those with expression levels
below a certain threshold (1 was used in the example) in all samples will be deleted,
and the remaining expression profile will be used in further analysis steps.

Similarity matrix

In order to generate a matrix containing the similarity scores between each pair of
genes in the input expression profile, the Pearson correlation coefficients between
each pair are calculated by the function CalculateCorrelation() according to Formula 1.

i1 (@i — &) (yi — §)
VZi (@ — 22 /T (s -)2

(https://en.wikipedia.org/wiki/Pearson correlation coefficient)

Tay =

Formula 1

Graph adjacency matrix

Based on the similarity matrix generated in the previous step, each pair of genes will
be evaluated according to their similarity score. If the similarity score between two
genes (giand g;j) has value are greater than the threshold defined by the user (e.g 0.85)
the cell (i,j) in the graph adjacency matrix will have the value of 1; if the similarity is
smaller than the opposite number of the threshold, cell (i,j) will have value of -1,
otherwise 0.

Graph generation and traverse
A co-expression graph is built according to the adjacency matrix where an edge

1

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

02-601 Gene Co-expression Visualization Zhiyun Gong

between the two genes g; and g; corresponds to the value 1 or -1 in the cell (i,j) and
stored in a CoExprsTable object in Go.

The complete co-expression graph could have multiple connected components disjoint
from each other, each represents one group of co-expressed genes. In order to identify
and separate them for further use, the Depth-First Search algorithm (Formula 2) is
implemented, and the resulting separated components are stored in a slice of
CoExprsTable objects.

DFS—iterative (G, s): Where G i1s graph and s is source vertex
let § be stack
S.push(s) Inserting s in stack
mark s as visited
while (S is not empty):
Pop a vertex from stack to visit next
v = 3. topl
S.pop()
Push all the neighbours of v in stack that are not visited
for all neighbours w of v in Graph G:
if w is not wvisited :
S.push(w)

mark w as visited

(https://www.hackerearth.com/zh/practice/algorithms/graphs/depth-first-search/tutorial/)
Formula 2

(b) Results Generation

Text-based results

In the “text” mode, the user needs to give three addition parameters: input file name,
output file name, and correlation threshold. After entering the "text" mode, a function
pipe() which pipes all functions involved in matrices generation, graph generation and
graph traversal, passing the parameters to relevant functions, and writing the results
to the user-determined file. The results will be written into a single text file, containing
a list of co-expressed gene groups and the gene names in each group.

Web application
A web app is built and served by Go to enable users to upload files, choose their
interested list of genes and visualize the network interactively.

There are three handler functions written in Go to serve the three webpages of the
application:

1. upload_handler() is the handler function that serves the index page of the app,
where the users start the analysis by uploading the gene expression profile file. It
examines whether the uploaded file has legit size, if yes, it will store it to a
temporary text file that will be deleted before running a new analysis.

https://www.hackerearth.com/zh/practice/algorithms/graphs/depth-first-search/tutorial/

02-601 Gene Co-expression Visualization Zhiyun Gong

2. GraphContentHandler() serves the web page where all co-expressed gene clusters
are displayed in a table and the user can choose one to visualize interactively in a
new tab.

3. GraphPageHandler() serves the web page "/Graph" which will be opened in a new
tab after clicking the "Generate Graph" button in the "/GraphlList” page. The
interactive graph is generated using D3.js, and an open-source force-direct graph
model developed in D3.js is used as a prototype
(https://bl.ocks.org/heybignick/3faf257bbbbc7743bb72310d03b86ee).

Gene Ontology (GO) enrichment analysis
The GO enrichment analysis was performed on an external website shinyGO
(http://bioinformatics.sdstate.edu/go/).

Results

The example dataset was downloaded from GEO database under accession ID
GSE121017, in which the gene counts for 26,485 genes had already been normalized
but not filtered. The filtering threshold set up for this dataset is 1, and there are 10460
remain after being filtered. However, analyzing the whole dataset will take several
minutes, so 200 genes randomly selected from the unfiltered original dataset will be
used as the example in the following paragraphs (/Data/sample_200_rand.txt).

When running the program in text mode using the command “$./Go_codes.exe
text Data/sample_200_rand.txt Results/test_200_Dec_5.txt 0.85" the
progress of analysis can be seen in the terminal as shown in Figure 1.

Correlation coeffients calculated!
relatio ide!
raph generate! Now finding gene clusters...

ound!
Results generate! Please see your results in: Results/test_200_Dec_5.txt

Figure 1

The results of the analysis written in the text file are shown below.

The input file is: Data/sample 200 rand.txt
There are 6 samples

There are 200 genes initially

There are 75 genes after filtering

This is the co-exprs graph:
No. of nodes in the graph: 75
No. edges in the graph: 287

There are 147 positive relations and 140 negative relations

There are 2 co-expressed gene clusters in the graph

3

https://bl.ocks.org/heybignick/3faf257bbbbc7743bb72310d03b86ee
http://bioinformatics.sdstate.edu/go/

02-601 Gene Co-expression Visualization Zhiyun Gong

The © -th cluster contains 66 genes: [TMEM126B PRR19 TYMS CCDC24 LIMD1
IKBKB FBX09 ALDHO9A1 INTS12 OXSM USMG5 C1RL-AS1 CDK2AP1 MAP1LC3B FBX044 PIK3R4
MAU2 DIEXF RPAP3 PSMD4 PPP6C STIM2 LINCOO963 HTRA2 ADD3 TAF7 FAM83H PRICKLE3
MSH6 ZNF276 PTGR2 CCAR2 TNFRSF10A TMEM161A OXSR1 LGALS8 FAM120A OFD1 CFAP20
METTL17 MTMR6 ZNF589 PRSS21 GRINA MCM6 Cllorf80 RPS29 CARD16 GATB PEX19 RBM7
MAZ SF3B5 QRSL1 PLCB3 ILK OGT IER3 TMEM132A MRPS15 RIPK1 MAP2K5 ELP3 DYNC2LI1
PPP1R2 MNAT1]

The 1 -th cluster contains 2 genes: [DCUN1D4 SMC2]

When running the program in web mode, the only parameter the user needs to give
is "web", then the server will be started and the web app could be seen at
http://Tocalhost:8000.

After opening the web app, there will be an upload selection form and a submit button
for the user to provide the gene expression profile (Figure 2).

€ 9 C O localhost8000 * BB @ ko

Welcome to the gene co-expression web app!

Please upload expression profile

Corgelation tutoff 0 85
Choose File 'sample_200_rand txt upload

Figure 2

After setting the correlation cutoff to 0.85 (same as we used in text mode), selecting
the Data/sample_200_rand.txt file, and clicking on the submit button, the web page
will be redirected to http://lTocalhost:8000/GraphList, where a table containing
the two co-expressed gene clusters will be shown as in Figure 3.

http://localhost:8000/
http://localhost:8000/GraphList

02-601 Gene Co-expression Visualization Zhiyun Gong

« C O localhost t * B @R e

Co-expressed gene groups

Generate graph!

Show 10 v |entries Search

Seleet * Group Genes

[TMEMI126B PRR19 TYMS CCDC24 LIMDI IKBKB FBX09 ALDH9A1 INTS12 OXSM USMGS CIRL-AS1 CDK2API MAPILC3B FBXO44 PIK3R4 MAU2 DIEXF RPAFP3 PSMD4 PPP6C STIM2
0 LINC00963 HTRA2 ADD3 TAF7 FAMS3H PRICKLE3 MSH6 ZNF276 PTGR2 CCAR2 TNFRSF10A TMEM161A OXSR1 LGALSS FAMI20A OFD1 CFAP20 METTL17 MTMR6 ZNF589 PRSS21
GRINA MCMSG C | 10rf80 RPS29 CARD16 GATB PEX19 RBM7 MAZ SF3BS QRSL| PLCB3 ILK OGT [ER3 TMEM132A MRPS15 RIPK| MAP2KS ELP3 DYNC2LI1 PPPIR2 MNATI]

1 [DCUNID4 SMC2]

Figure 3

In this webpage, the user can use the radio buttons to select the group of genes they
are interested in and visualize the co-expression network by clicking the “Generate
graph” button. Then a webpage will be opened automatically in a new tab at
http://localhost:8000/Graph, where an interactive graph will be shown as in
Figure 4 (Group 0 was chosen).

My graph

©PSMERPAF® ELP7@ DYNC2UI

oo @ LINCO0SE3
oMl
oHTRAZ
oFKRI
D0
o
@FBX044
onr
a0 oD
P E— eFrss2t smiLCE
bl = SCRINA AMS 3 RIPK g MAP2KS
OBIIY goxgu SUSMGS @CIRLA®CORAPT
oucws s
oNTHRS
|- onss
S NETTLIT N6
orPs2 oo
ecorrz
ecrar
@TNFRSFIOA
CGATR e e
o0 U O Ko 1 e
eoxsAt -
o PECALSE @535
RS QLK @TMEMIZA
soasLt
80GT
eRicE eitRs

Figure 4
This interactive graph enables users to see the gene names and the relationship
between each pair: a positively correlated gene pair has an orange edge between them,
while a negatively correlated pair is connected by a green edge.

The gene list of the first cluster was then copied and pasted to the web application

http://localhost:8000/Graph

02-601 Gene Co-expression Visualization Zhiyun Gong

shinyGO (http://bioinformatics.sdstate.edu/go/) for GO enrichment analysis, and the
result is shown in Figure 5. It is shown that this group of genes are mainly involved in
cell death and apoptotic process.

ShinyGO v0.61: Gene Ontology Enrichment
Analysis + more

Select KEGG pathways in the lef to

Figure 5

Discussion
There are still several aspects to be improved in this program for a better user
experience.

ID conversion function

The original gene expression matrix downloaded from a public database may use gene
symbols or gene accession ids for a specific database. For this program, the gene list
written to the text file as well as the label on the graph will be whatever provided by
the row names of the original file. Thus, it would be helpful that if the user can select
the original identifier type they provided and the program can convert them to
another id type that the user what to show in the graph.

Built-in GO enrichment analysis in text mode

It will be more convenient if GO enrichment could be performed locally and the results
could be directly included in the output text file. | did not figure out the way to do this
in Golang, but it should be applicable to trigger a system-level command for calling an
R script to handle the enrichment analysis and have the results written in a single file.
However, due to time constraints, this was not included in the current product.

Automatic redirection to shinyGO

In the web mode, the user needs to copy the gene list from the page to the external
website, which might be inconvenient. Thus, if this step could be automated, that by
clicking a button, the webpage will be redirected to the other website and the selected

6

http://bioinformatics.sdstate.edu/go/

02-601 Gene Co-expression Visualization Zhiyun Gong

gene list will be copied automatically, the web app may become easier to use.

Parallelism

When large datasets (e.g. the full profile of GSE121017 dataset) are given, the program
could be running for 5 to 10 minutes before generating the results, which is not
efficient. Thus, if some steps of the analysis process, such as similarity score calculation
and graph traverse could be divided and assigned to multiple processors, the efficiency
of the program would be increased to a great extent.

Current bugs
Some bugs are not solved yet because of time constraints. This first problem is that

the expression level cutoff is hardcoded and could not be customized by the user,
which would be better if making it customizable.

The other current problem is in the web part, which is that | did not figure out how to
pass a value from the current handler function to the one that the web page will be
redirected to. Thus, although .json files for all found co-expressed gene groups will be
generated, the GraphHandler could not read the index value that was selected on the
Graphlist page and choose the .json file to read accordingly. | did not have enough
time to figure out how to fix this in the end, so | just hardcoded the index as "0", that's
why currently whichever cluster the user selected, in the Graph page it always shows
the graph for the first group of genes.

Conclusion

In conclusion, for the final project, a program that can run in two modes to either
generate text-based results locally containing information about co-expressed gene
groups in the original expression profile or run the analysis and interactively visualize
the results on a web app was developed. Also, HTML, CSS, and JavaScript scripts are
involved in generating the web app. It is functional at this point, but there are still
several issues to be solved and aspects could be further improved in the future.

